Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Microbiol ; 13: 892447, 2022.
Article in English | MEDLINE | ID: covidwho-1997461

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the current coronavirus disease 2019 (COVID-19) pandemic and associated respiratory infections, has been detected in the feces of patients. Therefore, determining SARS-CoV-2 RNA levels in sewage may help to predict the number of infected people within the area. In this study, we quantified SARS-CoV-2 RNA copy number using reverse transcription quantitative real-time PCR with primers and probes targeting the N gene, which allows the detection of both wild-type and variant strain of SARS-CoV-2 in sewage samples from two wastewater treatment plants (WWTPs) in Kobe City, Japan, during the fourth and fifth pandemic waves of COVID-19 between February 2021 and October 2021. The wastewater samples were concentrated via centrifugation, yielding a pelleted solid fraction and a supernatant, which was subjected to polyethylene glycol (PEG) precipitation. The SARS-CoV-2 RNA was significantly and frequently detected in the solid fraction than in the PEG-precipitated fraction. In addition, the copy number in the solid fraction was highly correlated with the number of COVID-19 cases in the WWTP basin (WWTP-A: r = 0.8205, p < 0.001; WWTP-B: r = 0.8482, p < 0.001). The limit of capturing COVID-19 cases per 100,000 people was 0.75 cases in WWTP-A and 1.20 cases in WWTP-B, respectively. Quantitative studies of RNA in sewage can be useful for administrative purposes related to public health, including issuing warnings and implementing preventive measures within sewage basins.

2.
Jpn J Infect Dis ; 75(3): 249-253, 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1865652

ABSTRACT

A rapid and simple alternative test to real-time reverse transcription-polymerase chain reaction (RT-PCR) is required for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to help curb the spread of coronavirus disease (COVID-19). In the present study, we compared the RT-PCR method with chemiluminescent enzyme immunoassay (CLEIA) and reverse transcription loop-mediated isothermal amplification (RT-LAMP). We observed that the number of SARS-CoV-2 RNA copies and the CLEIA antigen quantification values were highly correlated. The detection limit for antigen quantification was 42.8 RNA copies for saliva samples and 23.4 copies for nasopharyngeal swab samples. For both purified RNA and purification-free crude RNA, the number of RNA copies and RT-LAMP threshold time (Tt) values were inversely correlated. RT-LAMP with purified RNA detected low copy numbers of RNA (5-50 copies), whereas fewer than 250 RNA copies could not be detected using crude RNA. CLEIA antigen quantification is potentially useful for large-scale screening, as it is compatible with high-throughput testing. RT-LAMP with crude RNA samples is applicable for rapid point-of-care testing because it can directly use patient specimens. It is important to select a diagnostic method that is simple and rapid when compared with RT-PCR, depending on the situation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL